CHAPTER

。
 Circumference and Area of a Circle

Lesson 11.1 Radius, Diameter, and Circumference of a Circle

Find the circumference of each circle. Use 3.14 as an approximation for π.

1.

2.

Find the distance around each semicircle. Use $\frac{\mathbf{2 2}}{\mathbf{7}}$ as an approximation for π.
3.

4.

Find the distance around each quadrant. Use 3.14 as an approximation for π.
5.

6.

Solve. Show your work. Use $\frac{\mathbf{2 2}}{\mathbf{7}}$ as an approximation for π.

7. A circular tabletop has a radius of 1.9 feet. Find its circumference.
8. A circular window has a diameter of 25 inches. Find its circumference.
9. The diameter of a coin is 18 millimeters. Find its circumference.
10. A sink is in the shape of a semicircle. Find the distance around the sink.

11. A coin purse is shaped like a quadrant. Find the distance around the purse.

\qquad

Find the distance around each figure. Use 3.14 as an approximation for π.
12. The figure is made up of a semicircle and a quadrant.

13. The figure is made up of four identical quadrants.

14. The figure is made up of a semicircle and two identical equilateral triangles.

15. The figure is made up of a quadrant within a square. Find the distance around the shaded region.

\qquad

Find the distance around each figure. Use $\frac{\mathbf{2 2}}{\mathbf{7}}$ as an approximation for π.
16. The figure is made up of two identical semicircles enclosed within a rectangle.

17. The figure is made up of two semicircles.

18. The figure is made up of two identical quadrants.

14. Area of trapezoid $C D E G$
$=\frac{1}{2} \cdot 20(36+20)=560$ in. 2
Area of triangle $B C G$
$=\frac{1}{2} \cdot 36 \cdot 36=648 \mathrm{in}^{2}$
Area of triangle $B D E$
$=\frac{1}{2} \cdot 20(36+20)=560 \mathrm{in}^{2}{ }^{2}$
Area of the shaded region
$=560+648-560$
$=648$ square inches
15. a) $P S=7$ units, $P Q=4.5$ units

Perimeter of $P Q R S$
$=7 \cdot 2+4.5 \cdot 2=23$ units 23 units $\rightarrow 138$ in.
1 unit $\rightarrow 138 \div 23=6$ in.
Length of each small rectangle
$=3.5$ units
$3.5 \cdot 6=21 \mathrm{in}$.
Area of each small rectangle
$=21 \cdot 6$
$=126$ square inches
b) $126 \cdot 9=1,134 \mathrm{in} .^{2}$

The area of rectangle $P Q R S$ is 1,134 square inches.
16.

By observation:
Area of $E F G A=$ area of $A B C D$
Length of square $F H C K$
$=$ perimeter of $A B C D \div 2$
$=30 \div 2=15 \mathrm{in}$.
Area of square FHCK
$=15 \cdot 15=225 \mathrm{in} .^{2}$
Total area of square $A D K E$ and square $A B H G$
$=234 \div 2=117$ in. 2
Area of rectangle $A B C D$
$=(225-117) \div 2$
$=54$ in. ${ }^{2}$
The area of rectangle $A B C D$ is
54 square inches.

Brain @ Work

1. a) Each equilateral triangle can be divided into 9 smaller equilateral triangles.
Area of each smaller triangle
$=18 \div 9=2 \mathrm{~cm}^{2}$
Area of the shaded region is formed by six smaller equilateral triangles $=6 \cdot 2=12$ square centimeters
b) Area of composite figure
$=18 \cdot 2-12$
$=24$ square centimeters
2. a)

Area of PQRS
$=18 \cdot 12=216$ in. 2
Area of triangle X
$=\frac{1}{2} \cdot 6 \cdot 8=24 \mathrm{in}^{2}{ }^{2}$
Area of triangle Y
$=\frac{1}{2} \cdot 12 \cdot 8=48$ in. 2
Area of triangle W
$=$ area of triangle Z
$=\frac{1}{2} \cdot 6 \cdot 4=12$ in. 2
Shaded region
$=216-(24+48+12+12)$
$=120$ square inches
b) Equal parts

Area of triangle MBA
$=\frac{1}{2} \cdot 12 \cdot 6=36$ in. 2
Area of triangle $A M N$
$=60-36=24$ in. 2
Length of base $\overline{A N}$
$=\frac{24 \cdot 2}{12}=4 \mathrm{in}$.
Length of $\overline{Q N}$
$=6+4=10$ inches

Chapter 11

Lesson 11.1

1. $2 \cdot 3.14 \cdot 11=69.08$ inches
2. $3.14 \cdot 50=157$ centimeters
3. Length of the semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 42=66 \mathrm{~cm}$
Distance around the semicircle
$=66+42=108$ centimeters
4. Length of the semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 1.54=2.42 \mathrm{in}$.
Distance around the semicircle
$=2.42+0.77+0.77=3.96$ inches
5. Length of the arc
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 10$
$=15.7 \mathrm{~cm}$
Distance around the quadrant
$=15.7+10+10$
$=35.7$ centimeters
6. Length of the arc
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 21.4$
$=33.598 \mathrm{ft}$
Distance around the quadrant
$=33.598+21.4+21.4$
$=76.398$ feet
7. $2 \cdot \frac{22}{7} \cdot 1.9=11.94$ feet
8. $\frac{22}{7} \cdot 25=78.57$ inches
9. $\frac{22}{7} \cdot 18=56.57$ millimeters
10. $\frac{1}{2} \cdot \frac{22}{7} \cdot 25=39.29 \mathrm{in}$.

Distance around the semicircle
$=39.29+25$
$=64.29$ inches
11. $\frac{1}{4} \cdot 2 \cdot \frac{22}{7} \cdot 11=17.29 \mathrm{~cm}$

Distance around the quadrant
$=17.29+11+11$
$=39.29$ centimeters
12. $\frac{3}{4}$ of the circle
$\approx \frac{3}{4} \cdot 2 \cdot 3.14 \cdot 18$
$=84.78 \mathrm{~cm}$
Distance around the figure
$=84.78+18+18$
$=120.78$ centimeters
13. Length of the arcs of the 4 quadrants
$\approx 2 \cdot 3.14 \cdot 15$
$=94.2 \mathrm{in}$.
Distance around the figure
$=94.2+15+15$
$=124.2$ inches
14. Length of semicircular arc
$\approx \frac{1}{2} \cdot 3.14 \cdot 18=28.26 \mathrm{yd}$
Distance around the shaded region
$=28.26+18 \cdot 3$
$=82.26$ yards
15. Length of the arc of the quadrant
$\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 20=31.4 \mathrm{~cm}$
Distance around the shaded region
$=31.4+20+20$
$=71.4$ centimeters
16. Length of the 2 semicircular arcs
$\approx \frac{22}{7} \cdot 7=22 \mathrm{in}$.
Distance around the shaded region
$=22+12+12=46$ inches
17. Length of the small semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 140=220 \mathrm{~cm}$
Length of the big semicircular arc
$\approx \frac{1}{2} \cdot \frac{22}{7} \cdot(140+35+35)=330 \mathrm{~cm}$
Distance around the shaded region
$=220+330+35+35$
$=620$ centimeters
18. Length of the arc of the 2 quadrants
$\approx \frac{1}{2} \cdot 2 \cdot \frac{22}{7} \cdot 7=22 \mathrm{~cm}$
Distance around the figure
$=22+7+7+2+2$
$=40$ centimeters

Lesson 11.2

1. $3.14 \cdot 20 \cdot 20$
$=1,256$ square centimeters
2. $3.14 \cdot 4 \cdot 4$
$=50.24$ square miles
3. $\frac{1}{2} \cdot \frac{22}{7} \cdot 17.5 \cdot 17.5$
$=481.25$ square feet
4. $\frac{1}{2} \cdot \frac{22}{7} \cdot 56 \cdot 56$
$=4,928$ square meters
5. $\frac{1}{4} \cdot 3.14 \cdot 3.5 \cdot 3.5$
≈ 9.6 square inches
6. $\frac{1}{4} \cdot 3.14 \cdot 14 \cdot 14$
≈ 153.9 square yards
7. $\frac{1}{2} \cdot \frac{22}{7} \cdot 20 \cdot 20$
≈ 628.57 square meters
8. $\frac{1}{2} \cdot \frac{22}{7} \cdot 7 \cdot 7=77$ square centimeters
