Name: _

Date: ___

CHAPTER

Lesson 11.1 Radius, Diameter, and Circumference of a Circle

Find the circumference of each circle. Use 3.14 as an approximation for π .

Find the distance around each semicircle. Use $\frac{22}{7}$ as an approximation for π .

Find the distance around each quadrant. Use 3.14 as an approximation for π .

Solve. Show your work. Use $\frac{22}{7}$ as an approximation for π .

7. A circular tabletop has a radius of 1.9 feet. Find its circumference.

8. A circular window has a diameter of 25 inches. Find its circumference.

9. The diameter of a coin is 18 millimeters. Find its circumference.

10. A sink is in the shape of a semicircle. Find the distance around the sink.

11. A coin purse is shaped like a quadrant. Find the distance around the purse.

25 in.

Ν	a	m	е	:

1)ata	
Dute	

Find the distance around each figure. Use 3.14 as an approximation for π .

12. The figure is made up of a semicircle and a quadrant.

13. The figure is made up of four identical quadrants.

14. The figure is made up of a semicircle and two identical equilateral triangles.

15. The figure is made up of a quadrant within a square. Find the distance around the shaded region.

Name: _

Find the distance around each figure. Use $\frac{22}{7}$ as an approximation for π .

16. The figure is made up of two identical semicircles enclosed within a rectangle.

17. The figure is made up of two semicircles.

18. The figure is made up of two identical quadrants.

14. Area of trapezoid *CDEG* $=\frac{1}{2} \cdot 20(36 + 20) = 560 \text{ in.}^2$ Area of triangle BCG $=\frac{1}{2}\cdot 36\cdot 36=648$ in.² Area of triangle BDE $=\frac{1}{2} \cdot 20(36 + 20) = 560 \text{ in.}^2$ Area of the shaded region = 560 + 648 - 560= 648 square inches **15.** a) *PS* = 7 units, *PQ* = 4.5 units Perimeter of PQRS $= 7 \cdot 2 + 4.5 \cdot 2 = 23$ units 23 units \rightarrow 138 in. 1 unit \rightarrow 138 \div 23 = 6 in. Length of each small rectangle = 3.5 units $3.5 \cdot 6 = 21$ in. Area of each small rectangle $= 21 \cdot 6$ = 126 square inches **b)** $126 \cdot 9 = 1,134 \text{ in.}^2$ The area of rectangle PORS is 1,134 square inches. **16.** F G A R Е Κ D С By observation: Area of EFGA = area of ABCDLength of square FHCK = perimeter of $ABCD \div 2$ $= 30 \div 2 = 15$ in. Area of square FHCK $= 15 \cdot 15 = 225 \text{ in.}^2$ Total area of square ADKE and square ABHG $= 234 \div 2 = 117 \text{ in.}^2$ Area of rectangle ABCD = (225 - 117) ÷ 2 $= 54 \text{ in.}^2$ The area of rectangle ABCD is 54 square inches.

Brain @ Work

1. a) Each equilateral triangle can be divided into 9 smaller equilateral triangles. Area of each smaller triangle
= 18 ÷ 9 = 2 cm² Area of the shaded region is formed by six smaller equilateral triangles
= 6 · 2 = 12 square centimeters

Chapter 11

Lesson 11.1

- **1.** $2 \cdot 3.14 \cdot 11 = 69.08$ inches
- **2.** $3.14 \cdot 50 = 157$ centimeters
- **3.** Length of the semicircular arc $\approx \frac{1}{2} \cdot \frac{22}{2} \cdot 42 = 66$ cm

$$\frac{7}{2}$$
 $\frac{7}{7}$ Distance around the semicircle

= 66 + 42 = 108 centimeters

- 4. Length of the semicircular arc $\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 1.54 = 2.42$ in. Distance around the semicircle = 2.42 + 0.77 + 0.77 = 3.96 inches 5. Length of the arc $\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 10$ = 15.7 cm Distance around the quadrant = 15.7 + 10 + 10= 35.7 centimeters 6. Length of the arc $\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 21.4$ = 33.598 ft Distance around the quadrant = 33.598 + 21.4 + 21.4 = 76.398 feet **7.** $2 \cdot \frac{22}{7} \cdot 1.9 = 11.94$ feet 8. $\frac{22}{7} \cdot 25 = 78.57$ inches **9.** $\frac{22}{7} \cdot 18 = 56.57$ millimeters **10.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 25 = 39.29$ in. Distance around the semicircle = 39.29 + 25= 64.29 inches **11.** $\frac{1}{4} \cdot 2 \cdot \frac{22}{7} \cdot 11 = 17.29$ cm Distance around the quadrant = 17.29 + 11 + 11= 39.29 centimeters **12.** $\frac{3}{4}$ of the circle $\approx \frac{3}{4} \cdot 2 \cdot 3.14 \cdot 18$ = 84.78 cm Distance around the figure = 84.78 + 18 + 18 = 120.78 centimeters **13.** Length of the arcs of the 4 quadrants ≈ 2 · 3.14 · 15 = 94.2 in. Distance around the figure = 94.2 + 15 + 15 = 124.2 inches 14. Length of semicircular arc $\approx \frac{1}{2} \cdot 3.14 \cdot 18 = 28.26$ yd Distance around the shaded region $= 28.26 + 18 \cdot 3$ = 82.26 yards
- 15. Length of the arc of the guadrant $\approx \frac{1}{4} \cdot 2 \cdot 3.14 \cdot 20 = 31.4 \text{ cm}$ Distance around the shaded region = 31.4 + 20 + 20= 71.4 centimeters 16. Length of the 2 semicircular arcs $\approx \frac{22}{7} \cdot 7 = 22$ in. Distance around the shaded region = 22 + 12 + 12 = 46 inches 17. Length of the small semicircular arc $\approx \frac{1}{2} \cdot \frac{22}{7} \cdot 140 = 220 \text{ cm}$ Length of the big semicircular arc $\approx \frac{1}{2} \cdot \frac{22}{7} \cdot (140 + 35 + 35) = 330 \text{ cm}$ Distance around the shaded region = 220 + 330 + 35 + 35 = 620 centimeters 18. Length of the arc of the 2 quadrants $\approx \frac{1}{2} \cdot 2 \cdot \frac{22}{7} \cdot 7 = 22 \text{ cm}$ Distance around the figure = 22 + 7 + 7 + 2 + 2= 40 centimeters Lesson 11.2 1. 3.14 · 20 · 20 = 1,256 square centimeters **2.** 3.14 · 4 · 4 = 50.24 square miles **3.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 17.5 \cdot 17.5$ = 481.25 square feet **4.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 56 \cdot 56$ = 4,928 square meters **5.** $\frac{1}{4} \cdot 3.14 \cdot 3.5 \cdot 3.5$ \approx 9.6 square inches **6.** $\frac{1}{4} \cdot 3.14 \cdot 14 \cdot 14$ ⁴ ≈ 153.9 square yards **7.** $\frac{1}{2} \cdot \frac{22}{7} \cdot 20 \cdot 20$ ≈ 628.57 square meters 8. $\frac{1}{2} \cdot \frac{22}{7} \cdot 7 \cdot 7 = 77$ square centimeters